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Abstract 
Flaw detection of the inner surfaces of especially critical pipes is based on visualization, 

which requires complex optical systems equipped with artificial intelligence functions. 
Training of such systems is very complicated due to the limited volume of defective products. 
The paper describes training and testing of machine learning algorithms in poor data by the 
example of detecting a defect at the inner surface of a pipe. The authors propose a method for 
developing a set of synthetic training images obtained using 3D models of technical objects 
with parameterized defects applied to them. Images can be generated by parametric 
description of the artificially defected inner surface of a pipe 3D model in Autodesk Inventor 
environment. Windows AutoIt OS automation environment is applicable to generate 
synthetic images and masks. The method allows obtaining a set of synthetic pipe images for 
training neural networks with U-Net and LinkNet architectures. The trained neural networks 
testing has shown the defect recognition at a high level both on a synthetic sample of images 
and on real images of inner surface of rejected pipes. 

Keywords: visualization, 3D modeling, machine learning, image processing, visual 
control, neural networks, data mining, U-Net, LinkNet. 

 

1. Introduction 
Computer vision and machine learning technologies have been widely applied to the 

monitoring of product facilities and quality assessment, as well as to flaw detection [11-14] in 
various fields, namely: agriculture [1-2], traffic management and road safety [3], construction 
and safety on construction sites [4-7], production planning [8], marketing [9], urban 
analytics [10] etc. 

Machine learning of optical systems usually requires a sufficient number of visual images 
of the product surfaces together with defects. This approach to non-destructive testing of 
products by optical methods plays a significant role at the stage of product quality assessment 
and finds application in various production tasks. One of these tasks is to ensure the quality 
of pipes in the process of manufacturing products in the power industry. 

When controlling the surface quality of technical objects in industry by automatic 
systems, there are two main problems based on the neural networks concept: 

- insufficiency of real images with defects (including labeled ones) necessary for training 
of neural networks; 

- the need to develop a well-founded procedure to assess the quality of computer vision 
systems, including for regulatory agencies. 
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One of the approaches to these problems solution is 3D model visualization of technical 
objects with parametrized artificial defects applied to them. These models allow creation of 
large sets of labeled surface images required for training neural networks. In addition, clear 
interrelation between the size and characteristics of defects with their images provides an 
evidence base confirming the performance quality of the computer vision systems. 

This paper describes the method developed for adjusting neural networks to recognize 
and classify images of inner tube surface with artificial defects. The images dataset was 
created on the basis of 3D surface models with superimposed parameterized volumetric 
defects in the absence of real images of the object. 

Studies were carried out on small-sized pipe models that are part of heat exchange units. 
Artificial defects were superimposed to the inner pipe surfaces. 

2. Problem state 
Feng Liu, Ronghang Zhu, Dan Zeng et al (2018) dedicate their paper [15] to the facial 

recognition method based on 2D images and their 3-dimensional reconstructions. 
The paper by Xingchao Peng and Baochen Sun et al (2015) [16] describes an approach to 

the training of deep convolutional neural networks (DCNN) in the recognition of different 
objects using generated images based on 3D models. The article says that this approach can 
be effective when the set of real images is limited. Cars, airplanes, animals are used as objects 
for recognition. Different textures are applied to objects and backgrounds during the study 
process.  

The article by Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars Mescheder, Andreas 
Geiger (2018) [17] states that the success of deep learning in the field of computer vision is 
based on the availability of a significant volume of sets of labeled images. To reduce the need 
for manual image labeling, the use of virtual 3D objects is gaining popularity. The paper uses 
an approach based on the combination of synthetic and real images to recognize urban scenes 
observed when driving a car.  

In general, we can note the high interest of machine learning algorithm developers in the 
use of synthetic images, including objects generated from 3D models to create training sets 
[20]. 

3. Training sampling 
Computer algorithm that implements this method is shown in Figure 1 in the form of 

diagram. Roughly, the process of forming image datasets can be divided into the following 
stages: 

Stage 1-creation of a 3D pipe model with defects in Autodesk Inventor; 
Stage 2 - automatic generation of image dataset for a neural network based on a 3D pipe 

model by AutoIt; 
Stage 3 - data preparation module for neural network; 
Stage 4 - training of neural network based on generated synthetic image dataset; 
Stage 5 - testing and evaluation of the neural network training. 
At the 1st stage, one should create the pipe 3D model with given parameters (length, 

outer diameter, wall thickness) by for example Autodesk Inventor Professional software, 
which has a number of properties, namely: 

- Autodesk Inventor is a parametric 3D modeling system; 
- Autodesk Inventor has efficient 3D rendering module, which allows obtaining a realistic 

2D screenshot based on 3D representation; 
- the system includes such tools as macros and iLogic to automate the generating a large 

number of images of defects with given and programmable forms and dimension values. 
 



 

 

 
Fig. 1.  Pipe 2D imaging algorithm based on 3D pipe model. 

 



 

 

Further, it is very important to choose the appropriate textures for all objects in the scene 
to obtain a realistic view of the pipe inner surface. There is a base of standard pre-installed 
materials in Autodesk Inventor for this. Table 1 shows several options for choosing pipe 
material. To adjust the lighting, a directional light source is created with parameters 
(intensity 0-100%; attenuation compensation 1-100%; positional representation X mm, Y 
mm, Z mm). 

 
Table 1. Visualization of pipe inner surface using material database. 

   
Polished steel Silicon nitride (polished) Titanium 

   
Galvanized steel Aluminium 1 Aluminium 2 

   
Honed steel Lead Stainless steel (ground) 

 
In order to form a set of synthetic defect images using the method of creating realistic 3D 

models, the most common defects (including foreign impurities detected on pipes) were 
selected: longitudinal guide mark, circular guide mark, handling mark, rolled blister and 
spatter. Using Autodesk Inventor there were created 3D defect models with variable 
parameters (see Figure 2 and Table 2). 

To create synthetic images, the mentioned group of defects can be expanded. Any kind of 
customer supplied defect can be selected. At the same time, the algorithm can be tuned to a 
defect other than the reference one. Thus, when using this system, a database of unknown 
defects will be accumulated, for which training samples can subsequently be created. 

Stage 1 ends with the following results: 3D models of defects with parameterized 
variables and a list of defects and their parameters with ranges of their variation. 

 
Table 2. List of defects with variable parameters 
Longitudinal guide mark 
- displacement (determines the position of the defect on the inner 
surface of the pipe relative to its end face); 
 - length of longitudinal guide mark; 
 - cross-sectional diameter; 
 - turn (determines the position of the defect on the surface of the 
pipe relative to its axis); 
 - depth (defined as the distance from the axis of the pipe to its 
inner surface); 

 
Synthetic Image 

 
Real Image 



 

 

 
Circular guide mark 
- displacement (determines the position of the defect inside the 
pipe relative to its end face); 
- pitch of a helix; 
- cross-sectional diameter; 
- turn (determines the position of the defect on the surface of the 
pipe relative to its axis); 
- revolution (determines the length of the circular guide mark); 
- taper (determines the taper of the helix, forming the geometry of 
the circular guide mark); 
- helix radius (defines the radius of the circular guide mark); 

 
Synthetic Image 

 
Real Image 

Handling mark 
- displacement (determines the position of the defect inside the 
pipe relative to its end face); 
- turn (determines the position of the defect on the surface of the 
pipe relative to its axis); 
- rotation (determines the position of the handling mark relative to 
its axis); 
- minor diameter of the handling mark; 
- major diameter of the handling mark; 
- depth of the handling mark (defined as the distance from the axis 
of the pipe to its inner surface); 
- interface (determines smoothness of defect boundaries); 

 
Synthetic Image 

 
Real Image 

Rolled blister 
- displacement (determines the position of the defect inside the 
pipe relative to its end face); 
- turn (determines the position of the defect relative to the axis of 
the pipe); 
- cross-sectional diameter (defines the thickness of the rolled 
blister); 
- pitch (defines the pitch of the helix); 
- taper (determines the taper of the helix); 
- revolution (defines the length of the rolled blister); 
- depth of the dent (defined as the distance from the inner surface 
of the pipe to the axis of the rolled blister); 
- helix radius; 

 
Synthetic Image 

 
Real Image 

Spatter 



 

 

- displacement (determines the position of the defect inside the 
pipe relative to its end face); 
- turn (determines the position of the defect on the surface of the 
pipe relative to its axis); 
- rotation (determines the position of the defect, relative to its 
axis); 
- diameter (shape-generating parameter) 

 
Synthetic Image 

 
Real Image 

 
At the second stage, the problem of automatic generation of 2D images based on 3D 

models is solved. The AutoIt programming language is to be used as a means to automate the 
generation process. This language allows creating automation scripts (macros) that can 
simulate user actions, such as text input and operations with system and program controls, as 
well as respond to events. With the help of AutoIt, the following tasks are solved: control of 
the image generation automation system, organizing of operation and statistical information, 
as well as calculation required when creating new combinations of defect parameters. The 
algorithm for automatic generation of synthetic images is given in Figure 2. 

To simplify the task of automating image generation, use the iLogic technology built into 
Autodesk Inventor. iLogic allows designing in Autodesk Inventor based on certain rules, so 
that user can automate and customize 3D models. Rules can be installed with the assembly or 
with an external file. With the use of iLogic rules and forms, import and export of parameters 
of a 3D model of the pipe with defects is performed. 

The result of the second stage is the formation of data sets: synthetic images of the pipe 
with defects and binary masks. 

At the third stage, post-processing of the generated synthetic images takes place, namely, 
the masks are binarized and additional noise is added to the image of the pipe with the defect. 
Next, a training set of images is formed, which is to be used for adjusting the neural network, 
and a validation set is formed, which is to be used for selection of the best settings of the 
neural network obtained during training. 

4. Practical implementation 
The neural network training script is implemented in Python using Keras and 

TensorFlow libraries to describe architecture and training and by OpenCV and Numpy 
libraries to load and preprocess images and masks from the training set. Training was carried 
out for 100 training epochs, with the preservation of the best weights, the Intersection over 
union (IoU) metric was used to evaluate the accuracy of neural networks, Adam was chosen 
as the optimization algorithm, the initial learning rate coefficient was chosen equal to 0.0001. 
The learning was divided into 2 stages: decoder training, so as not to damage the pre-trained 
encoder model with significant errors at the beginning of training, and training of the entire 
neural network. 

 



 

 

 
Fig 2. Algorithm for automatic generation of synthetic images based on 3D pipe model 

 



 

 

To solve the problem of detecting defects, U-Net neural network, widely used in tackling 
segmentation issues [21.22] and a smaller scale LinkNet [23-24] neural network were chosen.  

U-Net architecture is similar in its structure to the VGG classification neural network. To 
focus on areas with target objects, apart from contraction layers, U-Net also contains 
expansion blocks. The part of the neural network that is used to capture the context of the 
image while gradually reducing the image size is called encoder and essentially represents a 
neural network used for classification, but without layers that predict object classes in the 
image. The part of the neural network that is designed to generate masks and enables precise 
localization of the detected features is called a decoder. 

A feature of the U-Net architecture (Fig. 3) is that encoder layers are connected to the 
equivalent in size decoder layers, due to which the boundaries of objects on the resulting 
masks are more precisely mapped, and this allows performing segmentation of objects of 
small sizes in images as well. Such connections are called skip connections and are used to 
pass features from the encoder path to the decoder path; in addition, such connections allow 
error gradients to approach the earlier layers of the neuron network without vanishing, which 
accelerates the neural network training process. The results of the U-Net neural network 
operation on test sets of synthetic images generated from 3-dimensional models of the pipe 
surface are given in Table 3. 

 
Table 3. Results of u-net neural network operation 

Neural network - U-Net  
(8,047,441 - number of training parameters, IoU coefficient = 0.8) 
Type of defect Image of pipe with defects 

(1000 pcs.) 
Image of pipe without defects (1000 
pcs.) 

NN detected 
defects 

NN didn’t 
detect defects 

NN detected 
defects 

NN didn’t detect 
defects 

Circular guide 
marks  

77,5% 22,5% 0,2% 99,8% 

Longitudinal guide 
marks 

65% 35% 0,15% 99,85% 

Handling marks 100% 0% 0,5% 99,5% 

Rolled blister 92,5% 7,5% 1% 99% 

Spatter 100% 0% 0,8% 99,2% 

 
LinkNet is a faster neural network in comparison with U-Net. This is obtained by 

transforming the decoder part. In LinkNet, the combination of encoder and decoder features 
is accomplished by addition, as opposed to concatenation in U-Net, which results in fewer 
parameters and required calculations in subsequent layers (Figure 3). 

In the case of both neural networks, the classification neural network MobileNet was 
chosen as the encoder for detecting defects. The choice is justified by a low number of 
parameters and, accordingly, low requirements for computing resources and fast learning 
ability.  

To speed up training process, a MobileNet model, pre- trained on the ImageNet dataset 
was used. The results of the LinkNet neural network operation on test set of synthetic images 
generated from 3-dimensional models of the pipe surface are given in Table 4. 

 



 

 

LinkNet

Input Image

256, 256, 3

Conv2D+BN+ReLU

3x3, 128, 128, 32

DWConv2D+BN+ReLU

3x3, 128, 128, 32

Conv2D+BN+ReLU

1x1, 128, 128, 64

DWConv2D+BN+ReLU

3x3, 64, 64, 64

Conv2D+BN+ReLU

1x1, 64, 64, 128

DWConv2D+BN+ReLU

3x3, 64, 64, 128

Conv2D+BN+ReLU

1x1, 64, 64, 128

DWConv2D+BN+ReLU

3x3, 32, 32, 128

Conv2D+BN+ReLU

1x1, 32, 32, 256

DWConv2D+BN+ReLU

3x3, 32, 32, 256

Conv2D+BN+ReLU

1x1, 32, 32, 256

DWConv2D+BN+ReLU

3x3, 16, 16, 256

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 16, 16, 512

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 16, 16, 512

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 16, 16, 512

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 16, 16, 512

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 16, 16, 512

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 8, 8, 512

Conv2D+BN+ReLU

1x1, 8, 8, 1024

DWConv2D+BN+ReLU

3x3, 8, 8, 512

Conv2D+BN+ReLU

1x1, 8, 8, 1024

Bilinear Upsampling

2x2, 16, 16, 256

Conv2D+BN+ReLU

3x3, 16, 16, 256

Conv2D+BN+ReLU

1x1, 16, 16, 512

+

Conv2D+BN+ReLU

1x1, 16, 16, 128

Bilinear Upsampling

2x2, 32, 32, 128

Conv2D+BN+ReLU

3x3, 32, 32, 128

Conv2D+BN+ReLU

1x1, 32, 32, 128

+

Conv2D+BN+ReLU

1x1, 32, 32, 64

Bilinear Upsampling

2x2, 64, 64, 64

Conv2D+BN+ReLU

3x3, 64, 64, 64

Conv2D+BN+ReLU

1x1, 64, 64, 128

+

Conv2D+BN+ReLU

1x1, 64, 64, 32

Bilinear Upsampling

2x2, 128, 128, 32

Conv2D+BN+ReLU

3x3, 128, 128, 32

Conv2D+BN+ReLU

1x1, 128, 128, 64

+

Encoder

Decoder

Conv2D+BN+ReLU

1x1, 8, 8, 256

Conv2D+BN+ReLU

1x1, 128, 128, 16

Bilinear Upsampling

2x2, 256, 256, 16

Conv2D+BN+ReLU

3x3, 256, 256, 16

Conv2D+BN+ReLU

1x1, 256, 256, 16

Conv2D+Sigmoid

3x3, 256, 256, 1

Output mask

Conv2D - two-dimensional layer of convolutional neurons

DWConv2D - depthwise layer of convolutional neurons

BN - Batch Normalization

ReLU - Rectified Linear Unit

Оperation name

Filter size, height and width of output feature maps, number of 

channels

Input Image

256, 256, 3

Conv2D+BN+ReLU

3x3, 128, 128, 32

DWConv2D+BN+ReLU

3x3, 128, 128, 32

Conv2D+BN+ReLU

1x1, 128, 128, 64

DWConv2D+BN+ReLU

3x3, 64, 64, 64

Conv2D+BN+ReLU

1x1, 64, 64, 128

DWConv2D+BN+ReLU

3x3, 64, 64, 128

Conv2D+BN+ReLU

1x1, 64, 64, 128

DWConv2D+BN+ReLU

3x3, 32, 32, 128

Conv2D+BN+ReLU

1x1, 32, 32, 256

DWConv2D+BN+ReLU

3x3, 32, 32, 256

Conv2D+BN+ReLU

1x1, 32, 32, 256

DWConv2D+BN+ReLU

3x3, 16, 16, 256

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 16, 16, 512

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 16, 16, 512

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 16, 16, 512

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 16, 16, 512

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 16, 16, 512

Conv2D+BN+ReLU

1x1, 16, 16, 512

DWConv2D+BN+ReLU

3x3, 8, 8, 512

Conv2D+BN+ReLU

1x1, 8, 8, 1024

DWConv2D+BN+ReLU

3x3, 8, 8, 512

Conv2D+BN+ReLU

1x1, 8, 8, 1024

Bilinear Upsampling

2x2, 16, 16, 1024

Concatenation

Conv2D+BN+ReLU

3x3, 16, 16, 256

Conv2D+BN+ReLU

3x3, 16, 16, 256

Bilinear Upsampling

2x2, 32, 32, 256

Concatenation

Conv2D+BN+ReLU

3x3, 32, 32, 128

Conv2D+BN+ReLU

3x3, 32, 32, 128

Bilinear Upsampling

2x2, 64, 64, 128

Concatenation

Conv2D+BN+ReLU

3x3, 64, 64, 64

Conv2D+BN+ReLU

3x3, 64, 64, 64

Bilinear Upsampling

2x2, 128, 128, 64

Concatenation

Conv2D+BN+ReLU

3x3, 128, 128, 32

Conv2D+BN+ReLU

3x3, 128, 128, 32

Bilinear Upsampling

2x2, 256, 256, 32

Conv2D+BN+ReLU

3x3, 256, 256, 16

Conv2D+Sigmoid

3x3, 256, 256, 1

Encoder

Decoder

Output mask

U-net 

 
Fig. 3. U-net and LinkNet neural network architectures 

 
Table 4. Results of the linknet neural network operation 
Neural network - LinkNet  
(4 144 577 - number of training parameters, IoU coefficient = 0.8) 

Type of defect 

Image of pipe with defects (1000 
pcs.) 

Image of pipe without defects 
(1000 pcs.) 

NN detected 
defects 

NN didn’t 
detect defects 

NN detected 
defects 

NN didn’t 
detect defects 

Circular guide marks 67% 33% 0% 100% 

Longitudinal guide 
marks 

56,5% 43,5% 0% 100% 

Handling marks 99% 1% 0% 100% 
Rolled blister 91% 9% 1% 99% 
Spatter 100% 0% 0% 100% 

 
In Table 5, the examples of recognition of synthetic images of defects on the inner surface 

of a pipe generated from 3D models by U-Net and LinkNet neural networks are given. 



 

 

The next step was testing of neural networks (U-Net and LinkNet) trained on synthetic 
images using real photographs of the internal surface of a pipe with defects (Table 6). In the 
process of detection of defects by neural networks, all defects found in real photographs were 
recognized, but the accuracy of recognition is to be enhanced, for example, by generating 
more realistic synthetic images for training. 
 
Table 5. Examples of neural network defect detection 

U-Net neural network LinkNet neural network 

Synthetic image with 
defect 

Result of recognition 
Synthetic image 

with defect 
Result of recognition 

    

    

    

    

    
 

Table 6. Examples of defects detection by neural network based on real images. 

Real image of inner 
surface of pipe with 

defect 
   

Result of recognition 

   

Type of defect 
“longitudinal guide 
mark” defect type 

“rolled blister” defect 
type 

“handling mark” 
defect type 

Real image of inner 
surface of pipe with 

defect 
   

Result of recognition 

   

Type of defect “handling mark” defect type “dust” defect type 



 

 

5. Conclusion 
The findings of the study: 
1. The method of a training sample formation and visualization of a training set of 

synthetic images has been developed. Images are built on the basis of 3D models of technical 
objects with parameterized defects applied to them. This method is applicable in conditions 
of the lack of real images (including labeled ones) for training neural networks. 

2. Pre-trained (following the proposed method) neural networks of U-NET and LinkNET 
architecture were tested in the task of detecting defects on synthetic images. Low rates of 
false detection of defects, less than 1%, as well as high rates of detection of defects such as 
"handling marks," "spatter," "guide marks": more than 91% were obtained. 

3. U-Net and LinkNet neural networks, trained by the method proposed in the study, 
showed good level of recognizing defects on real images. 

Moreover, it should be noted that this method allows simplifying the process of 
acquisition and labeling real data for the use in machine learning algorithms. It is especially 
relevant in tasks where the process of real data acquisition is difficult and there is lack of data 
for training. 

Further development of the approach is aimed at expanding the base of defects and their 
synthetic models, reducing the time for generating synthetic images, developing a method for 
checking the adequacy of models, extending the method to other objects of industrial visual 
control. 
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